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A B S T R A C T

Drought forecasting is a vital for mitigating the impact of drought events on the economy, tourism, agriculture
and water resource systems. This paper adopts the proposed Wavelet-ARIMA-ANN (WAANN) model and the
latest Wavelet-Adaptive Neuro-Fuzzy Inference System (WANFIS) model to predict the Standardized
Precipitation Evapotranspiration Index (SPEI) at the Langat River Basin for different time scales (1-month, 3-
months and 6-months). Model input data pre-processing with wavelet decomposition for improving the per-
formance of the models was carried out apriori. The historical SPEI from 1976 to 2007 were used in the WAANN
and WANFIS models for predicting the SPEI for the test period from 2008 to 2015. The Adjusted Coefficient of
Determination (R2

adj), Root-Mean-Square-Error (RMSE), Mean Absolute Error (MAE), Willmott's Index of
Agreement (d) and the Nash-Sutcliffe Coefficient of Efficiency (E) were used to assess the models. It was found
that the prediction accuracy of the two models improved with time scale length. For the prediction of SPEI-1 (1-
month), the errors associated with both models were considered relatively high. Based on the performance
measures and graphical plots, the WAANN model is better for the prediction of SPEI-3 and SPEI-6. The WANFIS
model had satisfactory prediction of the mid-term drought forecasting for all stations. The WAANN model de-
veloped in this study however, gives better accuracy for both, the short-term and mid-term drought forecasting.

1. Introduction

On the basis of the long-run average precipitation (normal pre-
cipitation) for a particular basin, the declining trend of precipitation
indicates the initiation of droughts (Jalalkamali et al., 2015). Low re-
lative humidity, temperatures, high wind velocity, rainfall character-
istics including intensity, duration of precipitation and the distribution
of rainfall during the crop growing seasons are important features of the
droughts (Mishra and Singh, 2010). It has been reported in researches
that the drought-induced conditions developed seasonally in the event
of El Nino (also known as the warm phase of El Nino Southern Oscil-
lation, ENSO). El Nino is induced by the reduction of trade winds and,
in tandem with the increase of earth surface temperatures, appears to
occur on the average, every 3–4 years (Paz et al., 2007).

Even though Malaysia receives an average of 2800mm of pre-
cipitation annually, the country however is still subjected to prolonged
dry spells; especially at the Langat River Basin, where the rapid urba-
nisation of the Kuala Lumpur City area has resulted in an increased
demand for the freshwater supply (Pour et al., 2014). The ENSO

profoundly affects the condition of climate in Malaysia and in South-
east Asia. Yusof et al. (2012) applied the Kriging method to analyse the
upward and downward trends during the occurrence of droughts in
Peninsular Malaysia. Their results showed that the major regions of
West Malaysia are subjected to an upward trend throughout the dry
season, particularly in the eastern and western regions. It is extremely
imperative for the water resources department to predict the drought
intensity, severity and duration. With prior awareness of the onset of
droughts, appropriate actions to mitigate the consequential damages
can be considered. Precise and representative drought index series
about the onset, extent and the end of the drought event allows the
proper drought contingency plans to be established (Subash et al.,
2011).

Drought monitoring and early warning are important phases to
manage droughts (Bachmir et al., 2016). Among the approaches for
drought forecasting, the use of artificial intelligence (AI) shows out-
standing performance and accuracy (Masinde, 2014; Ozger et al., 2011;
Belayneh et al., 2014). The flexibility and adaptability of AI is useful in
predicting the occurrence of droughts that poses varying durations,
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frequencies and intensities; characteristics that are not easily de-
termined effectively using empirical relations. Artificial Neural Net-
work (ANN), Fuzzy Logic (FL) and Support Vector Regression (SVR) are
the examples of AI models that can be used to forecast the time series
modelling based on historical data (Djerbouai and Souag-Gamane,
2016). Another popular type of data-driven model is the stochastic
method. The older Auto Regressive Integrated Moving Average Model
(ARIMA) and Seasonal Auto Regressive Moving Integrated Average
Model (SARIMA) are the most widely adopted stochastic approaches, as
they are relatively simple yet providing excellent results (Mossad and
Alazba, 2015; Bazrafshan et al., 2015).

In order to improve the prediction accuracy in the time series
forecasting, different types of hybrid models were developed to mini-
mize the error between the actual and predicted values. For example,
both Choubin et al. (2014, 2016) explored the effectiveness of ANFIS
model in forecasting the Standardized Precipitation Index (SPI) for
different regions. Apart from that, ARIMA-ANN, Wavelet-ANN (WANN)
and WANFIS are also effective forecasting tools among the hybrid
models (Belayneh et al., 2014; Shabri, 2014). The wavelet transform
had been proven to decompose the incoming signal into different fre-
quencies (Djerbouai and Souag-Gamane, 2016; Belayneh and
Adamowski, 2012, 2013; Özger et al., 2011, 2012) and thus, providing
a more accurate output for the data driven models. By combining the
strength of different models, the hybrid models can give a higher degree
of accuracy.

In 2013, the WANFIS model was first used in drought forecasting
because the wavelet transform has the ability to improve the accuracy
of the models. The performance of the WANFIS model was compared
with the WANN, ANN and ANFIS. WANFIS model results were more
precise than other models in the study and the wavelet transform was
particularly good in improving meteorological drought forecasting.
Shabri (2014) also proposed to use the WANFIS model to forecast the
drought events in Malaysia. Subsequently, the WANFIS model was
widely recognised as an effective tool to forecast the time series of

drought index. However, the performance of the WANFIS highly relied
on the modelling of the ANFIS model. Seo et al. (2016) had pointed the
drawbacks of using the ANFIS modelling that would lead to difficulty in
the identification of network parameters and the number and type of
membership functions. Moreover, the development of the ANFIS model
is computationally expensive and complex.

The aim of this paper is to improve the drought forecasting proce-
dure at the Langat River Basin, using hybrid modelling. An alternative
model, the WAANN was proposed in this study since the wavelet
transform is able to reduce the complexity of the time series and the
ARIMA-ANN model was proven as an appropriate tool in the time series
forecasting (Babu and Reddy, 2014; Khashei and Bijari, 2011). The
latest hybrid model WANFIS in drought forecasting is used for com-
parison. The expected results are the SPEI series predicted with both
models and the accompanying performance evaluations.

2. Methodology

2.1. Study area and data acquisition

The catchment area of the Langat River Basin in Selangor, Malaysia
is about 2400 km2, supplying approximately 65% of water usage in the
state of Selangor. Two reservoirs in the Langat River Basin, namely the
Semenyih dam (area of 56.6 km2) and the Hulu Langat dam (area of
41.0 km2) supply water to the state. The recorded daily precipitation
and temperature for each station in the basin were retrieved from the
Department of Irrigation and Drainage (DID) Malaysia and the
Malaysian Meteorology Department (MMD). After determining the
suitability of the data, the records from six stations were used. A set of
daily meteorological data, including rainfall and temperature were
obtained for these stations for the period of 1976–2015; with the ex-
ception of station 44320, where only the daily data from 1985 to 2015
is available. The location of the Langat River Basin is illustrated in
Fig. 1 and the details of selected hydrometric stations in Langat River

Fig. 1. Location of Langat River Basin.
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Basin are given in Table 1.
In the homogeneous test for climate time series, climatic factors are

assumed to be the only factors contributing to the variations. However,
changes in microenvironment, instrumentation and variations in the
observation time may introduce inhomogeneity in a time series by
hiding the true climatic patterns. It is essential to check the homo-
geneity of a long-term hydrological data record. Four absolute test
methods: Standard Normal Homogeneity Test, Buishand Range Test,
Pettitt Test and the Von Neumann Ratio Test were selected to verify the
homogeneity of the time series.

2.2. Standardized precipitation evapotranspiration index (SPEI)

The recently developed drought index, SPEI is identified as a very
appropriate tool for researching and monitoring drought conditions
under warming since many researchers had conducted studies of SPEI
drought analysis (Vicente-Serrano et al., 2010; Wang et al., 2014). The
SPEI combines the multi-scale nature of the SPI while considering the
Palmer Index sensitivity with evapotranspiration (based on temperature
variation) using simple computation. The SPEI takes the resultant ef-
fects of precipitation, temperature or evapotranspiration into account
in developing of the drought evolutionary stages (Beguería et al., 2014),
in contrast to the Rainfall Decile Drought Index (RDDI) and the SPI that
are solely assessed with rainfall data.

The computed value of SPI or SPEI indicating the drought severity
based on the magnitude is such that the drought is categorised as mild if
the value of SPI or SPEI ranges from 0 to −1, moderate if from −1 to
−1.5, severe from −1.5 to −2 and extreme if less than −2. The ca-
tegory defined for the SPEI is identical with those of the SPI because
they share a similarity in the computation that is based on the prob-
ability distribution (Tan et al., 2015). According to the development of
SPEI by Vicente-Serrano et al. (2010), a total of 11 observations located
in different parts of the world which include tropical, monsoon, Med-
iterranean, semi-arid, continental, cold, and oceanic climates were se-
lected to develop the SPEI. Hence, the SPEI can be reliably used as the
drought index in tropical countries, including Malaysia to represent the
severity of the drought events.

2.2.1. Potential Evapotranspiration (PET)
The Potential Evapotranspiration (PET) represents the amount of

moisture loss through evaporation and transpiration when there is
sufficient availability of water. Many important papers have been
published on this well researched subject in important journals over the
past decades, and therefore suffice to say that the Thornthwaite method
was adopted herein, for the estimation of the PET due to its simplicity
and the data constraint.

2.2.2. Computation of SPEI
Based on the standard operating procedure mentioned in

MetMalayisa, 2014, drought disasters in Malaysia is managed based on
SPI index of time scales up to 6months. Thus, the time scales of SPEI
adopted in this study are 1, 3 and 6months. The calculation of SPEI is
based on the concept of deficit or surplus of water between the pre-
cipitation and the potential evapotranspiration based on the different
time scales. Suffice to say here, the computation of the SPEI can be

performed based on the probability distribution F(x) as expressed in Eq.
(1):
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d3= 0.001308. If the value of P is greater than 0.5, then it substituted
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where α represents the scale, β represents the shape, γ represents the
origin parameters, for D values in the range (γ > D < α). They can be
determined using the L-moment method (Ahmad et al., 1988) with Eqs.
(3)–(5).

= −
− −

β w w
w w w

2
6 6

1 0

1 0 2 (3)

=
−

+ −( ) ( )
α

w w β( 2 )

Γ 1 Γ 1β β

0 1
1 1

(4)

⎜ ⎟ ⎜ ⎟= − ⎛
⎝

+ ⎞
⎠

⎛
⎝

− ⎞
⎠

γ w α
β β

Γ 1 1 Γ 1 1
0

(5)

where Γ is the gamma function of β and wι ( = …ι 0,1,2 ) can be computed
by probability weighted moments (PWMs) through the L-moment
method (Hosking and Wallis, 1997);
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where x i is the ordered random sample ( < … <x x x )1 2 n of D (D=Pre-
cipitation-Potential Evapotranspiration) and n represents the sample
size.

2.3. ARIMA, ANN, ANFIS and discrete wavelet transform models

The ARIMA model is the stochastic model that is most widely used
for both short-term and long-term drought forecasting. The ANNs have
been widely used in hydrologic forecasting over the past decades.
During the network training, the weights and biases in the hidden layer
are adjusted to generate the target output (Kisi et al., 2016). The feed-
forward neural network is one of the more popular approaches used for
the time series forecasting. The Adaptive Neuro-Fuzzy Inference System
(ANFIS) is a hybrid of the neural network and fuzzy logic that applies
the former for training procedure to fine tune the correlated parameter
and function in a given sets of data (Shabri, 2014). The wavelet
transform is defined as a time-dependent approach that decomposes the
data series in the time-frequency space by providing a time-scale re-
presentation of processes and their connections. The original time series
is decomposed into two components, high-frequency (high-pass) com-
ponent and low-frequency (low- pass) component. Unlike the Fourier
transform, the DWT localises a time series both in scaling and space and
has some other favourable components where the wavelet function can
be analysed more rapidly compared to the similar Fourier function
(Kanika et al., 2012). The Haar wavelet was selected as the mother
wavelet in this study and it was computed using Matlab®. The Haar
wavelet has numerous advantages such as it is simple, fast and memory
efficient (Deka et al., 2012). The historical SPEI series was used as the
input for the one-dimensional wavelet transform to obtain the decom-
posed detail and approximation series.

Table 1
Details of the selected hydrometric stations at the Langat River Basin.

Station name Station ID Available data Record’s period

Pejabat JPS Sg. Manggis 2815001 Precipitation 1976–2015
P/K WLN P/S Telok Gong 2913001 Precipitation 1976–2015
RTM Kajang 2917001 Precipitation 1976–2015
Hospital Seremban 45241 Temperature 1976–2015
Ampangan Ulu Langat 44320 Temperature 1985–2015
Petaling Jaya 48648 Temperature 1976–2015
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2.4. Hybrid models

2.4.1. Wavelet-ARIMA-ANN (WAANN)
The development of WAANN requires the modelling of ARIMA-

ANN, which is the key stage to obtain a good performance in the time
series forecasting. Based on the modelling concept mentioned by Babu
and Reddy (2014), the development of WAANN model is illustrated in
Fig. 2(a) and the working procedure of the newly proposed WAANN in
this paper can be summarised as follows.

Firstly, the length of Moving Average (MA) filter m is adjusted to
generate a smoothened series ytr with low-volatility as presented in Eq.
(7):
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= − +
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i
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Next, the high-volatility time series yres can be obtained as the re-
sidual of the time series by using Eq. (8):

= −y y yres t tr (8)

The obtained ytr and yres series were then used to develop the
ARIMA and ANN, respectively.

For the modelling of ARIMA, the obtained ytr series (low-volatility)
from previous step was used as the input and modelled involving three
stages known as model identification, estimation and diagnostic check.
During the model identification, the autocorrelation function (ACF) and
partial autocorrelation function (PACF) of the time series were plotted
to determine the significance lag. The selection of model was based on
the lowest Akaike Information Criterion (AIC) and Schwarz Bayesian
Criterion (SBC) as shown in Eqs. (9) and (10):

= − +AIC logL m2 2 (9)

= − +SBC logL m ln n2 ( ) (10)

where m is the number of terms estimated in the model; L is the

likelihood function of the ARIMA models and n is the number of ob-
servations.

For ANN, the generated yres series was first put through wavelet
decomposition before it was used as the input for the model’s devel-
opment. The feedforward multilayer perceptron was proposed as it is
very effective and simple to compute for the hydrological forecasting.
Firstly, the decomposed input data was normalised before the model-
ling of ANN as expressed in Eq. (11) (Mishra et al., 2007):

= −
−

X X X
X Xn

o min

max min (11)

where Xn is the normalised data; Xo is the observed data; Xmax is the
maximum value among the observed data and Xmin is the minimum
value among the observed data. The training algorithms, Levenberg
Marquardt backpropagation (trainlm) and Bayesian regularisation
backpropagation (trainbr) were selected to identify the most appro-
priate training algorithm for the SPEI time series. The training stage
was conducted using 70% of the data samples; the next 15% was used in
the testing stage, whilst the remaining 15% was used at the validation
stage. The optimum number of lag and hidden neuron was chosen based
on trial and error.

Finally, the predicted time series of WAANN model was generated
using the results from ARIMA and ANN, by obtaining the sum of the
series from both models.

2.4.2. Wavelet-Adaptive Neuro-Fuzzy Inference System (WANFIS)
The coupling of wavelet transformation and Adaptive Neuro-Fuzzy

Inference System (ANFIS) in the field of hydrological forecasting is
considered a relatively new approach in recent years. The combination
of these two methods is known as WANFIS and is a better model
compared to the stand-alone ANFIS. In this paper, a Sugeno-type FIS
was adopted due to its effectiveness in computation and performs well
with optimisation and adaptive techniques. The development of the
WANFIS is shown in Fig. 2(b) and the working procedure can be

Fig. 2. Development of Models.
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described as follows. Firstly, the decomposed historical SPEI series was
normalised and used as the input variables for the development of fuzzy
interference system (FIS) in the genfis2 (ANFIS with subtractive clus-
tering). The radii in the genfis2 were adjusted to obtain more accurate
results (Kisi et al., 2015). The ANFIS algorithm was then applied to the
trained FIS to enhance the performance of the model. The number
training epoch and initial step size in the ANFIS algorithm were de-
termined through trial and error. The predicted outputs were then
generated based on the evalfis algorithm in the Matlab® for the purpose
of validation.

2.5. Model’s performance evaluation

After modelling of the WAANN and the WANFIS models, the per-
formance of both models in forecasting the monthly SPEI was statisti-
cally assessed with several key statistical parameters. The parameters
suggested included the Root-Mean-Square-Error (RMSE), Mean
Absolute Error (MAE), Willmott's Index of Agreement (d) and Nash-
Sutcliffe Coefficient of Efficiency (E). The Adjusted Coefficient of
Determination (R2

adj) was adopted to evaluate the model performance in
this study as well. The calculation of RMSE, MAE, d, E and R2

adj are
shown in Eqs. (12)–(17), respectively:
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where N is the number of samples and p is the number of regression
coefficients (including the intercept).

A good model should have a lower RMSE and MAE which indicates
low-accumulated errors. Besides, the values of R2

adj, d and E should be
close to the unity for a better fitting model. All these five parameters
normally are closely related to each other where if the RMSE is low, the
MAE tends to be low and the R2

adj, d and E are found to be closer to
unity.

3. Results and discussion

3.1. Homogeneity tests

The calibration of the homogeneity test was: firstly, the time series
was divided into twelve months (from January until December) and
then each month of the dataset was tested for homogeneity. The p-value
for all the selected tests should be greater than the 5% significance

value to indicate that the time series is homogeneous in a strict sense.
The four tests were tested with the null hypothesis where the data were
assumed homogeneous. The results were classified into three categories
including class ‘useful’, ‘suspect’ and ‘doubtful’. The ‘useful’ categor-
ization was when none or one out of four tests rejected the null hy-
pothesis. When two of four tests rejected the null hypothesis, it was
categorised as ‘suspect’. On the other hand, the dataset was classified as
‘doubtful’ once three or four tests had rejected the null hypothesis.

Two rainfall stations, namely the Pejabat JPS Sg. Manggis station
(2815001) and the P/KWLN P/S Telok Gong station (2913001) were
classified as ‘useful’ due to none of four tests rejected the null hy-
pothesis. The useful dataset of the RTM Kajang station (2917001) was
91.67% with only 8.33% was considered as ‘suspect’. In comparison
with the rainfall stations, the datasets of all temperature stations ex-
hibited relatively poor homogeneity. Approximate 91.67% of data of
the Hospital Seremban station (45241) was categorised as ‘doubtful’.
Similarly, the Ampangan Ulu Langat station (44320) had 50% of data
considered as ‘doubtful’ and 16.67% in class ‘suspect’ and 33.33% as
class ‘useful’. On the other hand, the data of the Petaling Jaya station
(48648) showed a better homogeneity with about 42% ‘useful’ and
33.33% ‘doubtful’. Therefore, the Petaling Jaya station (48648) was the
only station used in this study for the computation of historical
Potential Evapotranspiration (PET) and SPEI.

3.2. Model development

After the computation of historical PET and SPEI, the SPEI time
series was decomposed with the level of decomposition 3. The level of
decomposition, L is determined based on the number of the dataset, N
and determined by the equation L= int[log(N)] (Tiwari and Chatterjee,
2010). The period of record was from 1976 to 2015 (N=480), thus,
the level of decomposition, L=3.

The wavelet transform decomposed the time series into four com-
ponents including A3, D1, D2 and D3 which were used as the inputs for
ANN and ANFIS models. The development of WAANN and WANFIS
required the modelling of ANN and ANFIS models. Both models used
the historical SPEI from 1976 to 2007 as the training dataset. Modelling
of the WANFIS models with 3-months lag showed a superior perfor-
mance with high prediction accuracy. Increasing the lag beyond
3months did not improve the performance of the WANFIS. While the
significance lag of ANN varied with different SPEI series and it was
determined via trial and error. Since each monthly SPEI had decom-
posed into four components through wavelet transformation, the total
inputs became multiple of four with the lag to predict the one-step
ahead value. Table 2 lists the network architecture of the best ANN and
ANFIS models.

Table 2 indicates that the training algorithm for all the feedforward
neural network models was Bayesian regularization backpropagation
(trainbr) with the training epoch equal to 1000. This training function
applied the Levenberg-Marquardt optimization to propagate the weight
and bias data. The algorithm has the ability to train the network in the
difficult and complex situation and provides early stopping to prevent
overfitting. The hidden neurons of the ANN model were determined by
trial and error as different time series fit better with a different number
of hidden neurons. During the simulation, the optimum hidden neurons
were identified with the best-measured goodness of fit (MAE and
RMSE). Similar to the findings of Djerbouai and Souag-Gamane (2016),
the wavelet decomposition reduced the SPEI series complexity and
thus, a small number of the hidden neurons (between 2 and 4) was
sufficient in this study to obtain the desired outputs in ANN. Increasing
the number of hidden neurons beyond the optimum number may cause
a deterioration of the network performance due to overfitting. Over-
fitting occurs when the training performance exhibits an excellent re-
sult but incapable to accurately predict the output in the validation
stage as the network had memorised the training input data and unable
to simulate the output of unknown data. Similar to the modelling of
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ANFIS, overfitting can be avoided by altering the number of the epoch
to eliminate overtraining.

For the development of the hybrid model WAANN, the historical
SPEI was separated into high volatility and low volatility components.
The low volatility component was modelled with a linear ARIMA model
which involved in three stages; known as model identification, esti-
mation and diagnostic check.

During the model identification, the autocorrelation function (ACF)
and partial autocorrelation function (PACF) of the time series were
plotted to determine the significance lag as shown in Fig. 3. Fig. 3
describes the significance lag of ACF at 1, 2, 3, 4, 5, 9, 10, 11, 12, 13
and 14; while the PACF had the significance lag at 1, 2, 3, 4, 5, 6 and 8.
Hence, the ARIMA (p,0,q) had a possible combination of p=1 to 8 and
q=1 to 14. The best ARIMA model was distinguished based on the
lowest Akaike Information Criterion (AIC) and Schwarz Bayesian Cri-
terion (SBC) as tabulated in Table 3. It was found that the ARIMA model
fitted well for the RTM Kajang station (2917001) where all the pre-
dicted SPEI had low AIC and SBC compared to other stations. Among
the different time scales studied, the best model was found at the RTM
Kajang station (2917001) in forecasting the SPEI-6 with AIC= -
2133.50 and SBC=−2096.42. In contrast, the lowest prediction ac-
curacy of the model was found at the P/KWLN P/S Telok Gong station
(2913001) in predicting the SPEI-1 with AIC=−420.63 and
SBC=−366.51.

The overall performance of all the ARIMA models were considered
good due to the separation of data by the moving average filter. With
the kurtosis value close to 3 (Babu and Reddy, 2014), all the ARIMA
models were able to forecast the SPEI time series with a high degree of
accuracy despite the time scale (1, 3 and 6-months) of the series.

After model identification, the parameters of autoregressive (AR)
and moving average (MA) were identified in the estimation stage. For
the diagnostic check, it requires fulfilling the assumption of Box-
Jenkins’ theory where the residuals should be independent, homo-
scedastic and normally distributed in order to validate the performance
of the ARIMA model. The first step conducting the diagnostic check of
the models is to analyse the residuals from the ACF and PACF. Fig. 4
illustrates a good plot of Residual Autocorrelation Function (RACF) and
Residual Partial Autocorrelation Function (RPACF) for ARIMA (8, 0,
14) for the SPEI-6 prediction at the Pejabat JPS Sg. Manggis station
(2815001); as an example. The ARIMA model is considered well-fitted
with the time series as the RACF and RPACF lie within the confidence
boundaries, which clearly indicates the residuals are white noise and
independent.

Next, the Breusch-Pagan test was used to test for the homo-
scedasticity of residuals. As shown in Table 4, among the stations stu-
died, the P/KWLN P/S Telok Gong station (2913001) is the only station
that failed the test with the p-value less than 5% of significance value.
The results showed that the rest of the SPEI residuals were homo-
scedastic and constant which fulfilled the assumption of Box-Jenkins’

theory.
The last step in the diagnostic check requires testing for the nor-

mality of standardised residual based on the Shapiro-Wilk test, the
Anderson-Darling test and the Jarque-Bera test with 5% significance
value as listed in Table 5. All the SPEI series for the Pejabat JPS Sg.
Manggis station (2815001) and the RTM Kajang station (2917001)
passed all the three tests, which indicated the assumption for the linear

Table 2
Network architecture of the best ANN and ANFIS models.

Stations ID Time Scale ANN ANFIS

Network architecture Training
algorithm

Hidden transfer
function

Output transfer
function

Radii Epoch Initial step size

Pejabat JPS Sg. Manggis 2815001 SPEI-1 28-3-1 Trainbr Tansig Linear 0.9 40 0.3
SPEI-3 32-4-1 Trainbr Tansig Linear 1 40 0.3
SPEI-6 20-4-1 Trainbr Tansig Linear 1 50 0.3

P/KWLN P/S Telok
Gong

2913001 SPEI-1 28-2-1 Trainbr Tansig Linear 1 20 0.3
SPEI-3 28-3-1 Trainbr Tansig Linear 1 20 0.3
SPEI-6 32-3-1 Trainbr Tansig Linear 0.9 20 0.3

RTM Kajang 2917001 SPEI-1 28-2-1 Trainbr Tansig Linear 0.7 20 0.4
SPEI-3 20-3-1 Trainbr Tansig Linear 0.8 20 0.3
SPEI-6 28-3-1 Trainbr Tansig Linear 1 20 0.3

Fig. 3. ACF and PACF for SPEI-6 of Station Pejabat JPS Sg. Manggis (2815001).
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regression of ARIMA model was fully fulfilled. Meanwhile, the results
depicted that the SPEI-6 for the P/KWLN P/S Telok Gong station
(2913001) failed the Anderson-Darling test. However, with the passing
of the other two tests, it is still assumed that the linear regression of
ARIMA was fully fulfilled.

3.3. Models performance evaluation

The performance of both WAANN and WANFIS models were

compared with the statistical measures including the Adjusted
Coefficient of Determination (R2

adj), Root-Mean-Square-Error (RMSE),
Mean Absolute Error (MAE), Willmott's Index of Agreement (d) and the
Nash-Sutcliffe Coefficient of Efficiency (E) as shown in Table 6. The
performance validation was carried out over the 96months’ test period
(2008–2015) for all the SPEI series (SPEI-1, -3 and -6).

As illustrated in Table 6, the prediction from WAANN model for the
SPEI-6 of the RTM Kajang station (2917001) has the best results, with
the highest R2

adj (0.9603), d (0.9896) and E (0.9600) and the lowest
MAE (0.1364) and RMSE (0.1810). In contrast, the worst prediction
was found in the WANFIS model for the SPEI-1 of the Pejabat JPS Sg.
Manggis station (2815001) (R2

adj = 0.4994, MAE=0.5090,
RMSE=0.7582, d=0.8296 and E=0.4916). Clearly, as the time
scale increases from SPEI-1 to SPEI-6, the performance of both WAANN
and WANFIS improved significantly as a higher SPEI would reduce the
white noise by increasing the filter length (Mishra and Desai, 2005).
Consequently, it is interesting to note that both WAANN and WANFIS
models can predict the higher time scale SPEI more accurately due to
less fluctuation.

In terms of forecasting ability for SPEI-1, the WAANN model per-
formed better than the WANFIS model for the Pejabat JPS Sg. Manggis
station (2815001) where higher R2

adj, d and E with lower MAE and

Table 3
Best ARIMA models with AIC and SBC.

Stations ID Time Scale Model m Kurtosis AIC SBC

Pejabat JPS Sg. Manggis 2815001 SPEI-1 ARIMA (0, 0, 13) 7 2.917 −526.01 −467.78
SPEI-3 ARIMA (15, 0, 14) 7 2.784 −1189.59 −1064.88
SPEI-6 ARIMA (8, 0, 14) 5 2.631 −1264.13 −1168.57

P/KWLN P/S Telok Gong 2913001 SPEI-1 ARIMA (6, 0, 6) 6 2.961 −420.63 −366.51
SPEI-3 ARIMA (15, 0, 6) 8 3.022 −1186.62 −1095.22
SPEI-6 ARIMA (8, 0, 7) 8 3.014 −1506.48 −1440.14

RTM Kajang 2917001 SPEI-1 ARIMA (13, 0, 12) 22 2.991 −1323.01 −1215.65
SPEI-3 ARIMA (11,0, 10) 21 2.999 −1750.77 −1659.98
SPEI-6 ARIMA (3, 0, 5) 21 3.009 −2133.50 −2096.42

Fig. 4. RACF and RPACF for ARIMA (8, 0, 14) for SPEI-6 of Station Pejabat JPS Sg.
Manggis (2815001).

Table 4
Breusch-Pagan Test for Residuals Homoscedasticity.

Stations ID Time scale p-value Remark

Pejabat JPS Sg. Manggis 2815001 SPEI-1 0.577 Homoscedastic
SPEI-3 0.892 Homoscedastic
SPEI-6 0.987 Homoscedastic

P/KWLN P/S Telok Gong 2913001 SPEI-1 0.301 Homoscedastic
SPEI-3 0.634 Homoscedastic
SPEI-6 0.041 Heteroscedastic

RTM Kajang 2917001 SPEI-1 0.932 Homoscedastic
SPEI-3 0.875 Homoscedastic
SPEI-6 0.722 Homoscedastic

Table 5
Normality Test for Standardised Residuals.

Stations ID Time
scale

Shapiro-Wilk Anderson-
Darling

Jarque-Bera

Pejabat JPS Sg.
Manggis

2815001 SPEI-1 0.102 0.080 0.074
SPEI-3 0.568 0.618 0.565
SPEI-6 0.738 0.741 0.456

P/KWLN P/S
Telok
Gong

2913001 SPEI-1 0.265 0.118 0.193
SPEI-3 0.476 0.739 0.637
SPEI-6 0.095 0.036 0.163

RTM Kajang 2917001 SPEI-1 0.269 0.918 0.572
SPEI-3 0.340 0.464 0.082
SPEI-6 0.079 0.090 0.076
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RMSE were achieved. Besides, the WAANN obtained a lower MAE and
RMSE and higher E in predicting the SPEI-1 for the RTM Kajang station
(2917001). However, the WANFIS model outperformed the WAANN
model in predicting the SPEI-1 for the P/KWLN P/S Telok Gong station
(2913001). Hence, the performance of the models in forecasting the
highly sensitive SPEI-1 depends on the dynamic properties and com-
plexity of the time series which vary from station to station. As the error
obtained from the ARIMA model was considerably small, thus, the
prediction error obtained from the ANN became predominant for the
WAANN model’s performance. Overall, both WAANN and WANFIS
models for SPEI-1 exhibited the largest value of errors (MAE and RMSE)
compared to the other SPEIs due to the models being less effective in
detecting the white noise under a short lead time. Hence, the SPEI-1

was a less representative time scale to use in the drought forecasting as
it was extremely sensitive and unstable.

The results showed that with the performance measures for SPEI-3
and SPEI-6, using the WAANN model resulted in better prediction ac-
curacy. It is observed that the WAANN greatly outperformed the
WANFIS for all the stations to predict the future SPEI-3 and -6. This is
probably because of the SPEI-3 and -6 were less fluctuating and con-
tained lesser white noise compared to the SPEI-1. Therefore, the per-
formance of the ANN model improved significantly and subsequently
enhanced the performance of WAANN model. In contrast, the weakness
of WANFIS model was unable to predict the output reliably when the
input signals had fallen outside of the values of the training dataset. The
overall result is the WAANN model outperformed the WANFIS model in

Table 6
Statistical measures of the WAANN and WANFIS performance for one month lead time.

Stations ID Time Scale Models R^2 (adj) MAE RMSE d E

Pejabat JPS Sg. Manggis 2815001 SPEI-1 WAANN 0.7083 0.4313 0.5825 0.8955 0.6999
WANFIS 0.4994 0.5090 0.7582 0.8296 0.4916

SPEI-3 WAANN 0.9226 0.2183 0.2827 0.9801 0.9230
WANFIS 0.8242 0.2797 0.4311 0.9525 0.8210

SPEI-6 WAANN 0.9408 0.1730 0.2493 0.9847 0.9404
WANFIS 0.8891 0.2328 0.3435 0.9711 0.8868

P/KWLN P/S Telok Gong 2913001 SPEI-1 WAANN 0.5428 0.4664 0.6458 0.8380 0.5470
WANFIS 0.5874 0.4425 0.6216 0.8629 0.5802

SPEI-3 WAANN 0.8948 0.2033 0.2994 0.9726 0.8932
WANFIS 0.7979 0.2802 0.4123 0.9424 0.7973

SPEI-6 WAANN 0.9545 0.1517 0.2020 0.9884 0.9550
WANFIS 0.9133 0.2124 0.2792 0.9771 0.9140

RTM Kajang 2917001 SPEI-1 WAANN 0.6007 0.3895 0.6011 0.8702 0.6032
WANFIS 0.6071 0.4012 0.6017 0.8722 0.6024

SPEI-3 WAANN 0.8663 0.2400 0.3487 0.9640 0.8667
WANFIS 0.7901 0.2636 0.4381 0.9412 0.7896

SPEI-6 WAANN 0.9603 0.1364 0.1810 0.9896 0.9600
WANFIS 0.8619 0.2458 0.3445 0.9587 0.8550

Fig. 5. Observed and Predicted SPEI-1.
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Fig. 6. Observed and Predicted SPEI-3.

Fig. 7. Observed and Predicted SPEI-6.
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a reliable fashion, in forecasting the SPEI-3 and SPEI-6 for all the sta-
tions.

Figs. 5–7 illustrate the observed and predicted SPEI-1, SPEI-3 and
SPEI-6 graphical plots respectively, for all the stations. The extreme
outliers of the predicted SPEI for WAANN and WANFIS were identified
except for the highly fluctuating SPEI-1. Most of the outliers were found
in the time series for SPEI-3 and SPEI-6 especially for the Pejabat JPS
Sg. Manggis station (2815001) and the P/KWLN P/S Telok Gong station
(2913001). By observing the plots, the predicted values of WANFIS
yielded more extreme outliers compared to the WAANN. Hence, the
performance of the WANFIS was relatively lower than the WAANN in
SPEI-3 and SPEI-6 forecasting. The graphical results shows the limita-
tion of the WANFIS model when the input data were outside of the
training input range, whence the prediction accuracy deteriorated.

4. Conclusions

Two hybrid models, namely the WAANN and WANFIS were selected
to forecast the future SPEI at the Langat River Basin, Malaysia. The
input data for development of both models was pre-processed with
wavelet transform to enhance the performance of the models. Based on
the key statistical parameters, the performance of both WAANN and
WANFIS models improved due to the reduction of white noise by in-
creasing the filter length, when the time scale increased. For the pre-
diction of SPEI-1, the errors obtained by both WAANN and WANFIS
models were considered relatively high compared to SPEI-3 and SPEI-6
because both models were less effective in detecting the white noise for
highly fluctuating SPEI-1. It was also found that the prediction accuracy
of the WAANN was superior to the WANFIS for the SPEI-3 and SPEI-6
prediction for all the stations. In predicting the SPEI-3 and SPEI-6, both
WAANN and WANFIS models performed very well since the white noise
and outliers were greatly reduced. Nevertheless, the ability of the
WAANN model in predicting the SPEI-3 and SPEI-6 was superior to the
WANFIS model at all the stations. Apart from that, the WANFIS pre-
diction values yielded more extreme outliers compared to the WAANN
prediction values also showed the limitation of the WANFIS model
where the prediction accuracy declined when the input data were
outside the training input range. Finally, the WAANN model is the
better drought forecasting model and it is not limited by the training
input range and provided accurate predictions for both short-term and
mid-term drought conditions.
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